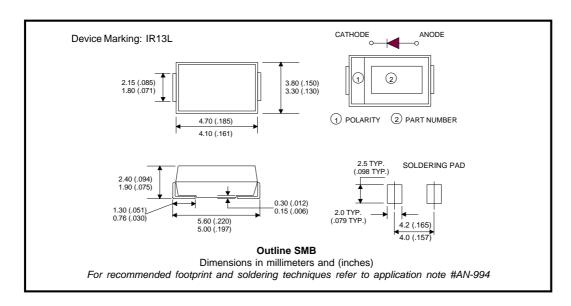

International Rectifier

MBRS130LTR

SCHOTTKY RECTIFIER

1 Amp


Major Ratings and Characteristics

Characteristics	MBRS130LTR	Units
I _{F(AV)} Rectangular waveform	1.0	Α
V _{RRM}	30	V
I _{FSM} @t _p =5μs sine	230	А
V _F @ 1.0Apk, T _J = 125°C	0.30	V
T _J range	- 55 to 125	°C

Description/ Features

The MBRS130LTR surface-mount Schottky rectifier has been designed for applications requiring low forward drop and small foot prints on PC boards. Typical applications are in disk drives, switching power supplies, converters, free-wheeling diodes, battery charging, and reverse battery protection.

- Small foot print, surface mountable
- Very low forward voltage drop
- High frequency operation
- Guard ring for enhanced ruggedness and long term reliability

Bulletin PD-20588 rev. D 03/03

Voltage Ratings

Part number	MBRS130LTR	
V _R Max. DC Reverse Voltage (V)	22	
V _{RWM} Max. Working Peak Reverse Voltage (V)	30	

Absolute Maximum Ratings

	Parameters	Value	Units	Conditions	
I _{F(AV)}	Max. Average Forward Current	1.0	Α	50% duty cycle @ T _L = 106 °C, rectangular wave for	
I _{FSM}	Max. Peak One Cycle Non-Repetitive	230	Α	5μs Sine or 3μs Rect. pulse	Following any rated load condition and
	Surge Current	40		10ms Sine or 6ms Rect. pulse	with rated V _{RRM} applied
E _{AS}	Non-Repetitive Avalanche Energy	3.0	mJ	$T_J = 25 ^{\circ}\text{C}, I_{AS} = 1\text{A}, L = 6\text{mH}$	
I _{AR}	Repetitive Avalanche Current	1.0	А	Current decaying linearly to zero in 1 μ sec Frequency limited by T_J max. Va = 1.5 x Vr typical	

Electrical Specifications

	Parameters	Value	Units		Conditions
V _{FM}	Max. Forward Voltage Drop (1)	0.420	V	@ 1A	T,= 25 °C
		0.470	V	@ 2A	1 _J = 25 C
		0.300	V	@ 1A	T ₁ = 125 °C
		0.370	V	@ 2A	1, 128 8
			mA	$T_J = 25 ^{\circ}C$	
I _{RM}	I _{RM} Max. Reverse Leakage Current (1)	10	mA	$T_J = 100 ^{\circ}C$	$V_R = \text{rated } V_R$
		20	mA	T _J = 125 °C	
C _T	Max. Junction Capacitance	200	pF	V _R = 5V _{DC} (test signal range 100KHz to 1Mhz) 25°C	
L _s	Typical Series Inductance	2.0	nH	Measured lead to lead 5mm from package body	
dv/dt	Max. Voltage Rate of Change	10000	V/µs		
	(Rated V _R)				

⁽¹⁾ Pulse Width < 300µs, Duty Cycle < 2%

Thermal-Mechanical Specifications

	•				
	Parameters	Value	Units	Conditions	
TJ	Max. Junction Temperature Range(*)	-55 to 125	°C		
T _{stg}	Max. Storage Temperature Range	-55 to 150	°C		
R _{thJL}	Max. Thermal Resistance Junction to Lead (**)	25	°C/W	DC operation (See Fig. 4)	
R _{thJA}	Max.Thermal Resistance Junction to Ambient	80	°C/W	DC operation	
wt	Approximate Weight	0.10 (0.003)	g (oz.)		
	Case Style	SMB		Similar to DO-214AA	
	Device Marking	IR13L			

 $[\]frac{\text{(*)}}{\text{dTj}} < \frac{\text{dPtot}}{\text{Rth(j-a)}} < \frac{1}{\text{Rth(j-a)}} \text{ thermal runaway condition for a diode on its own heatsink}$

^(**) Mounted 1 inch square PCB

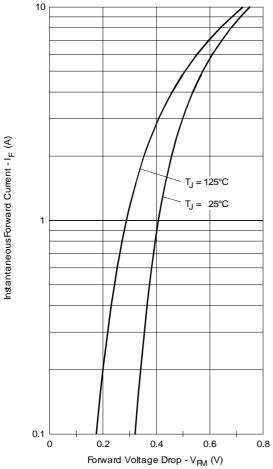


Fig. 1 - Maximum Forward Voltage Drop Characteristics

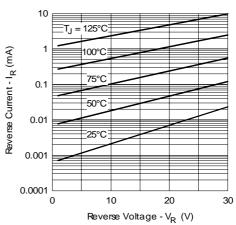


Fig. 2-Typical Peak Reverse Current Vs. Reverse Voltage

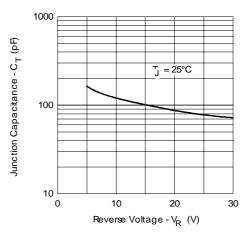


Fig. 3 - Typical Junction Capacitance Vs. Reverse Voltage

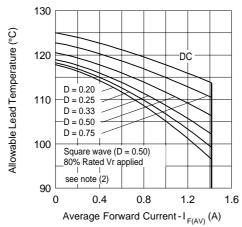


Fig. 4 - Maximum Average Forward Current Vs. Allowable Lead Temperature

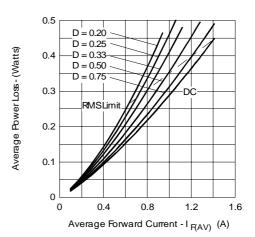


Fig. 5 - Maximum Average Forward Dissipation Vs. Average Forward Current

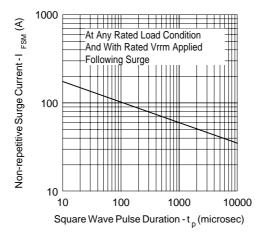
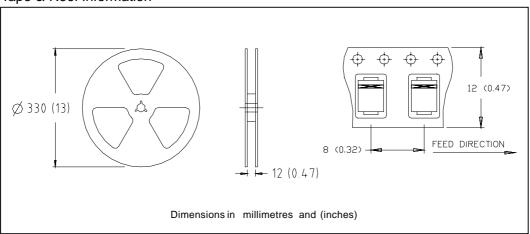
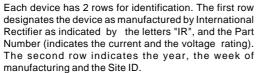
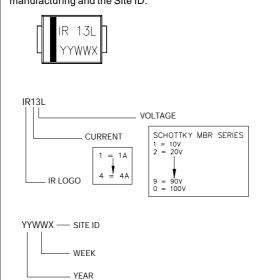



Fig. 6 - Maximum Peak Surge Forward Current Vs. Pulse Duration


 $\begin{aligned} \textbf{(2)} \ & \text{Formula used:} \ & \textbf{T}_{\text{C}} = \textbf{T}_{\text{J}} \cdot (\textbf{Pd} + \textbf{Pd}_{\text{REV}}) \textbf{x} \ \textbf{R}_{\text{thJC}}; \\ & \textbf{Pd} = \textbf{Forward Power Loss} = \textbf{I}_{F(AV)} \textbf{x} \ \textbf{V}_{\text{FM}} @ \ (\textbf{I}_{F(AV)} / \textbf{D}) \ \ (\text{see Fig. 6}); \\ & \textbf{Pd}_{\text{REV}} = \textbf{Inverse Power Loss} = \textbf{V}_{\text{R1}} \textbf{x} \ \textbf{I}_{\text{R}} \ (\textbf{1} - \textbf{D}); \ \textbf{I}_{\text{R}} @ \ \textbf{V}_{\text{R1}} = 80\% \ \text{rated} \ \textbf{V}_{\text{R}} \end{aligned}$


Tape & Reel Information

Marking & Identification

Ordering Information

MBRS130LTR - TAPE AND REEL

WHEN ORDERING, INDICATE THE PART NUMBER AND THE QUANTITY (IN MULTIPLES OF 3000 PIECES).

EXAMPLE: MBRS130LTR - 6000 PIECES

MBRS130LTR Bulletin PD-20588 rev. D 03/03

Data and specifications subject to change without notice. This product has been designed and qualified for Industrial Level.

Qualification Standards can be found on IR's Web site.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7309
Visit us at www.irf.com for sales contact information. 03/03